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Abstract: This study investigated the production of bioethanol from sugarcane bagasse in an optimized 

condition. Optimization of production medium helps to maximise metabolite yield. The capacity of 

Saccharomyces cerevisiae to ferment wort derived from sugarcane bagasse, an agricultural waste, in 

optimized conditions to produce bioethanol, was studied. A box-behnken design of five factors (substrate 

weight, temperature, inoculum size, pH, incubation time) and three levels was adopted to improve 

production efficiency. The substrate was subjected to physical and biological pretreatments to obtain 

simple sugars. Cellulase enzyme was used to breakdown the substrate to simpler sugars. Alcoholic 

fermentation was done using S. cerevisiae for six days. Brix content was measured before and during the 

fermentation process, as well as alcohol content after fermentation. Response surface plots of the factors 

were plotted. The results showed that brix value ranged from 2.3 
o
Bx to 3.9 

o
Bx while bioethanol 

production ranged from 1.38g/l to 2.35g/l. At optimal conditions of pH 6, temperature of 40
o
C, inoculum 

size of 4, substrate weight of 10g and fermentation time of 72h, predicted ethanol yield will be 4.23g/l. 

Sugarcane bagasse is a good substrate for bioethanol production. 4.23g/l of bioethanol was realised with 

optimization of the fermentation medium. 
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INTRODUCTION 
he impact of continuously burning 

non-renewable fossil fuel has been 

reduced rapidly by the use of 

alternative fuel. Bioethanol is generally used 

blended with gasoline, to reduce the usage of 

conventional fuel. This is currently used in 

existing motor engines (Liguori et al., 2015). 

Bioethanol is a liquid obtained from 

fermentation of sugar, which is gotten from 

plants containing carbohydrates (starch) 

(Renó et al., 2014). During the fermentation 

process, microorganisms are used as 

enzymes (Pejin et al., 2015). The following 

reasons make bioethanol widely used as a 

biofuel: bioethanol has high oxygen content 

and octane number; bioethanol is non-toxic; 

and bioethanol is environmentally friendly 

since it decreases pollutant emissions such 

as carbon monoxide, sulphur and nitrogen 

oxides (Hansdah et al., 2013 ; Wang et al., 

2013). Although bioethanol is widely used 

as a biofuel, it has a number of 

disadvantages, one of them being that it has 

low vapour pressure compared to gasoline, 

making engine starts difficult at low 

temperatures. Bioethanol can also cause 

corrosion in engines (Balat, 2011; Küüt et 

al., 2011). 

Bioethanol production from starch-based 

biomass depends on the type of feedstock 

and the steps involved in the bioethanol 

production process (Mahalaxmi and 

Williford, 2012). The production of 

bioethanol consists of five main steps 

namely, pre-treatment, hydrolysis, 

fermentation, distillation and dehydration 

(Sebayang et al., 2016). The hydrolysis 

process breaks down the carbohydrates in 

the feedstock into sugar by using enzymes 

(Yangcheng et al., 2013), and hydrolysis is 

often taken as the parameter of interest in the 

effort to improve bioethanol production. Due 

to global food security, first-generation 

bioethanol feedstocks such as corn, sweet 

potatoes, cassava and sugar cane have raised 

serious concerns, and this hinders worldwide 

acceptance of using bioethanol as fuel for 

compression-ignition engines. Hence, much 

effort is being made to produce bioethanol 

from non-edible feedstocks (Brunschwig et 

al., 2012; Ahmed et al., 2013; Yu et al., 

2013). 

Sugarcane bagasse is the waste that remains 

after the recovery of sugar juice through 
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crushing and extraction. Due to its well-

known energy properties, it has been the 

principal fuel used around the world in the 

sugarcane agro-industry (Jenkins et al., 

1998; Dermibas, 2004). It is an agricultural 

waste used to produce bioethanol using 

fermentation process. In Brazil, ethanol 

produced from the sugar in sugarcane is a 

popular fuel. Sugarcane bagasse is also used 

for the production of pulp, paper, board etc. 

Response surface methodology (RSM) is a 

technique that is based on design of 

experiments. RSM is used to analyse the 

changes of the dependent variable (i.e. 

response variabes to changes in the 

independent variables, and it is also used to 

optimize the dependent variable. RSM has 

been widely used to optimize the process 

parameters for bioethanol and biodiesel 

production (Zhang et al., 2013; Ali et al., 

2015; Dharma et al., 2016). RSM has been 

shown to be an efficient method to optimize 

every stage of the bioethanol production 

process, which significantly reduces time, 

costs and effort associated with conventional 

experimental techniques (Cheng et al., 

2015). 

Starch-to-glucose hydrolysis process have 

been widely studied and performed. The 

enzymatic and the acid hydrolysis process 

use conventional methods (Tasi´c et al., 

2009; Naguleswaran et al., 2012; Meinita et 

al., 2015; Gumienna et al., 2016)  Therefore, 

RSM optimization methods are used in the 

starch hydrolysis process into reducing 

sugar. This helps to obtain optimum 

conditions globally. 

In this study, sugarcane bagasse was used as 

the feedstock to produce bioethanol using 

Saccharomyces cerevisiae.  In addition, 

optimization of brix/reducing sugar was 

performed, with expectation of yielding the 

optimum quality of the produced reducing 

sugar. Response surface methodology based 

on the Box-Behnken experimental design 

was used to optimize the operating 

parameters of the hydrolysis processes for 

bioethanol production. Crude Fibre, ash, fat, 

crude protein, and carbohydrate content of 

the sugarcane bagasse was determined in 

triplicate according to the method of 

Copersucar (1989). 

 

MATERIALS AND METHODS 

Sample Collection and Processing 
Large quantity of sugarcane was given to 

people to consume and the bagasse which 

served as substrate was collected. Processing 

of substrate was done according to the 

method of (Offor-Emenike et al., 2020). The 

substrate was dried for weeks and was 

separately grinded using a grinding machine 

and sieved using a mesh of 350mm to obtain 

fine powdered stock. This was labelled and 

stored at room temperature in transparent 

polyethylene bags. Proximate analysis of the 

sugarcane bagasse was done and the crude 

fibre, ash, fat, crude protein, and 

carbohydrate content were determined 

(Copersucar, 1989). 

Isolation and preparation of Inoculum 
Saccharomyces cerevisiae was obtained 

from 33 Consolidated Breweries, Awo-

Omanma, Imo State, Nigeria. The strain 

obtained was characterized to ascertain their 

microscopic and biochemical characteristics 

(Scholar and Benedikte, 1999; Suh et al., 

2007). It was standardized using a 

spectrophotometer at wave length 600 (A600) 

and MacFarland standards 3(9.0×10
8
cfu/ml), 

4(1.2×10
9
cfu/ml) and 5(1.5×10

9
cfu/ml) 

respectively. 

Pretreatment of Sugarcane bagasse 
Two stages of pretreatments were used: 

(i) Heat treatment  
Different weights (10g, 15g and 20g) of the 

substrate (sugarcane bagassse) were 

dissolved in 150 ml of deionized water in 46 

separate Erlenmeyer flasks according to the 

design of experiment. After capping, the 

flasks were sterilized in batches in an 

autoclave at 121
o
C for 15 mins, to convert 

the cellulose sources into sugary liquid. The 

samples were filtered using a filter bag (Yu 

and Zhang, 2004).  
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(ii) Enzymatic Hydrolysis 

Starzyme (cellulose) enzyme with an activity of 

5000u/g was dissolved in buffer solution and added to 

the flasks. The enzyme breaks down cellulose into 

dissolved sugars. This was allowed to stand for 24 

hours. (Martin et al., 2002; Braide et al., 2016). After 

48 hours of addition of enzyme, the contents of the 

flasks were autoclaved to stop the action of the 

enzymes (Yu and Zhang, 2004). 

Design of Experiment for Optimization of 

Fermentation of Wort 
Box-Behnken design was adopted for optimization 

dissolved sugars in a 5×3 design (that is, five factors 

in three levels) using Minitab 17. Substrate weight 

(10g, 15g and 20g); pH (6, 7 and 8); inoculum size (3, 

4 and 5); temperature (30
o
C, 35

o
C and 40

o
C) and 

incubation time (72h, 96h and 120h) were factored. 

This produced 46 runs, each comprising of different 

combinations of the factors as shown in Table 1. 

Table 1: Interpretation from Experimental Design Table (Uncoded) 

StdOrder pH Temp (oC) Time (hours) Inoculum size (OD) Substrate (grams) 

1 6 30 96 4 15 

2 8 30 96 4 15 

3 6 40 96 4 15 

4 8 40 96 4 15 

5 7 35 72 3 15 

6 7 35 120 3 15 

7 7 35 72 5 15 

8 7 35 120 5 15 

9 7 30 96 4 10 

10 7 40 96 4 10 

11 7 30 96 4 20 

12 7 40 96 4 20 

13 6 35 72 4 15 

14 8 35 72 4 15 

15 6 35 120 4 15 

16 8 35 120 4 15 

17 7 35 96 3 10 

18 7 35 96 5 10 

19 7 35 96 3 20 

20 7 35 96 5 20 

21 7 30 72 4 15 

22 7 40 72 4 15 

23 7 30 120 4 15 

24 7 40 120 4 15 

25 6 35 96 3 15 

26 8 35 96 3 15 

27 6 35 96 5 15 

28 8 35 96 5 15 

29 7 35 72 4 10 

30 7 35 120 4 10 

31 7 35 72 4 20 

32 7 35 120 4 20 

33 6 35 96 4 10 

34 8 35 96 4 10 

35 6 35 96 4 20 

36 8 35 96 4 20 

37 7 30 96 3 15 

38 7 40 96 3 15 

39 7 30 96 5 15 

40 7 40 96 5 15 

41 7 35 96 4 15 

42 7 35 96 4 15 

43 7 35 96 4 15 

44 7 35 96 4 15 

45 7 35 96 4 15 

46 7 35 96 4 15 
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Alcoholic Fermentation Process 
One-tenth normality (0.1 N) of NaOH and 

0.1 N H2SO4 were prepared (Haynes, 2011) 

and used to adjust the pH of the contents of 

the flasks to pH 6, 7 and 8 respectively to 

conform to design of experiment. Buffer 

solution was introduced to the flasks to 

maintain the respective pH. The contents of 

all the flasks were made up to a volume of 

100ml each, to ensure uniform fermentation 

volume. According to the design of the 

experiment, 3, 4 and 5 MacFalands 

standards of the yeast (Saccharomyces 

cerevisiae) were aseptically introduced into 

the flasks. The content of the 46 flasks was 

allowed to ferment according to the 

parameters in the table of design (Abouzeid 

and Reddy, 1986). Fermentation was 

stopped after 72h, 96h or 120h respectively 

as defined by the design and brix/liquid 

mixture of the samples in the flasks was 

measured using the refractometer. The 

alcohol was determined by distillation 

method. This entire process was done in 

triplicate to avoid error. 

Optimization of Parameters for Alcohol 

Production 
Various concentrations of bioethanol 

produced under the specified conditions by 

each run were fed into Response Optimizer 

(Minitab 17) and used to derive optimal 

factors for maximum bioethanol production. 

Using the optimum, fermentation of 

substrate was carried out and resulting 

concentration of bioethanol was compared to 

the predicted value (Offor-Emenike et al., 

2020). 

 

RESULTS 

Chemical composition of sugarcane 

bagasse 

Sugarcane bagasse is a by-product of 

sugarcane industry composed of 

approximately 40-46% cellulose, 25-28% 

hemicullulose, 20-23% lignin, 2-6% ash, 1-

2% protein, 1.4% glucose, 2.5% fat. 

 

Table 2: Sugarcane bagasse composition 
Component   Chemical composition (wt %) 

Cellulose    46 

Hemicelluloses (pentoses)  27 

Lignin     23 

Pectin     0 

Protein     1.8 

Fat     2.5 

Glucose    1.4 

Ash     4 

 

Determination of brix and alcohol content 
The highest yield of ethanol was 2.35g/l 

with brix value of 3.9 from flask 14 at 

conditions of pH 8, temperature 35
o
C, 

fermentation time of 72h, inoculum size of 5 

and substrate weight of 15g while the lowest 

yield was 1.37g/l with brix value of 2.3 from 

flask 19 at conditions of pH 7, temperature 

35
o
C, fermentation time of 96h, inoculum 

size of 6 and substrate weight of 20g. At 

optimal conditions, the predicted ethanol 

yield will be 4.23g/l. This is quite higher 

than the alcohol content of the other set up 

operated under different combination of 

parameter. These are shown in Figures 1 and 

2.
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Fig 1: Brix and ethanol content of each flas
 

 

Fig 2: Brix and ethanol content of each flask
 

Main effect plot of the five factors indicated that at pH 6, response was almost 3.2. The yield 

dropped as the pH was increased to 7 but ga

Temperature of 40
o
C was seen as the best temperature for highest

72days, inoculum size of 4 and substrate weight of 10, gave the highest yield as shown in 

Figure 3. 
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Fig 1: Brix and ethanol content of each flask 

 

Fig 2: Brix and ethanol content of each flask 

Main effect plot of the five factors indicated that at pH 6, response was almost 3.2. The yield 

dropped as the pH was increased to 7 but gave its maximum yield of 3.28 at pH 8. 
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Fig 3: Main effect plot for carbohydrate (sugar) converted to ethanol 

 

Response surface plots which showed the interactions between the factors that affected the 

production of bioethanol are shown in Figure 4. 
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Fig 4 : Surface plots of carbohydrate converted.  
(a) Against substrate weight and inoculum size 

(b) Against substrate weight and time of fermentation  

(c) Against inoculum size and time of fermentation 

(d) Against substrate weight and temperature of fermentation 

(e) Against inoculum size and temperature of fermentation 

(f) Against time of fermentation and temperature of fermentation 

(g) Against substrate weight and pH of fermentation 

(h) Against inoculum size and pH of fermentation 

(i) Against time of fermentation and pH of fermentation 

(j) Against temperature of fermentation and pH of fermentation. 
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In (a), Inoculum size and substrate weight 

interacted, while pH, temperature and time 

were the hold values. Inoculum size of 4 and 

substrate weight of 10 gave the highest 

yield. Fermentation time and substrate 

weight interacted in (b) while inoculum size, 

pH and temperature were kept on hold. 

Highest yield was seen at fermentation time 

of 80h and substrate weight of 10. In (c), 

fermentation time and inoculum size 

interacted while substrate weight, pH and 

temperature were kept on hold. There was 

no significant increase in yield with increase 

in fermentation time; inoculum size of 4 

gave the best yield. Substrate weight of 10 

and temperature of 35
o
C gave the highest 

yield in (d), while the inoculum size, 

fermentation time and pH kept as hold 

values. In (e) temperature and inoculum size 

interacted. As the temperature was increased 

from 30
o
C to 35

o
C, increased yield was 

seen. The inoculum size of 5 gave the 

highest yield. Inoculum size, pH and 

substrate weight were the factors kept on 

hold while fermentation time and 

temperature interacted in (f). Best yield was 

seen at fermentation time of 80h and 

temperature of 40
o
C. In (g), Substrate weight 

of 20 and pH of 6 gave the highest yield 

when the two factors interacted, while 

keeping inoculum size, time and temperature 

on hold. The inoculum size and pH 

interaction in (h) showed that at pH of 6 and 

inoculum size of 5, maximum yield was 

realised, with temperature, time and 

substrate weight kept as hold values. In (i), 

Substrate weight, temperature and inoculum 

size were the hold values. The interaction 

between pH and fermentation time gave the 

best yield with pH of 8 and fermentation 

time at 80h. Temperature and pH were the 

interacting factors in (j) while the inoculum 

size, fermetation time and substrate weight 

were the hold values. At pH of 8 and 

temperature of 40
o
C, the highest yield was 

realised. 

There was increase in yield as the pH 

increased from 6 to 8. As the temperature 

was increased from 35
o
C to 37

o
C, the yield 

increased but dropped with further increase 

of the temperature to 40
o
C. The yield 

decreased as the time of fermentation 

increased. Increase in the inoculum size 

from optical density 3 to optical density of 4 

gave a high yield which dropped as the 

inoculum size was increased to optical 

density 5. Highest yield was seen at 

substrate weight of 10g. As the substrate 

weight was increased, the yield decreased. 

The optimization plot shows that at pH 6, 

temperature of 40
o
C, fermentation time of 

72h, inoculum size of 4 and substrate weight 

of 10g, predicted ethanol yield will be 

4.23g/l, as shown in Figure 5.

 

 
Fig 5: Optimization of Bioethanol Production 
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DISCUSSION 
Optimization of Brix and production of 

bioethanol from agro wastes involve the 

pretreatment of the agro wastes to expose 

the simple sugars which the yeast can utilize 

to produce ethanol (Mahro and Timm, 2007; 

Sheoran et al., 1998). Fermentation is done 

by the yeast which converts the sugars in the 

substrates to ethanol (Wyman, 1996). S. 

cerevisiae have been used in alcohol 

production especially in wine making and in 

the brewing industries. Kasavi et al. (2012) 

reported that the microorganism gives a high 

ethanol yield at a low distillation cost and 

can withstand high ethanol concentration. 

Yeasts are used to generate fuel ethanol 

from renewable energy sources (Kosaric and 

Velikonja, 1995). 

Results from the study showed that optimum 

temperature for alcohol production was 

40
o
C. Yah et al. (2010) reported that the 

optimum temperature of ethanol production 

is 25
o
C. According to MarelneCot (2007), 

high temperature above 40
o
C is not 

favourable for cells growth and it is a stress 

factor for microorganisms. Singh et al. 

(2013) recorded an ethanol concentration of 

78.6 g/l at 30
o
C. Ado et al. (2009) also 

observed a reduction in ethanol yield as 

temperature increased beyond 35
o
C. 

Temperature is one of the major factors that 

determine ethanol production. Fermentation 

process requires a suitable temperature for 

the yeast to react (Rivera and Cardona, 

2006). Temperature that is too high kills 

yeast, and low temperature slows down 

yeast activity.  

Higher yield of ethanol was seen at 

fermentation time of almost 72h when 

compared with the yield at 96h and 120h.  

According to Zabed et al. (2014), when the 

fermentation time becomes too long, it gives 

toxic e�ect on microbial growth, especially 

in batch mode, due to the high concentration 

of ethanol in the fermented broth. 

Fermentation time has an effect on the 

growth of microorganisms. Brix conversion 

works with the fermentation time.  

The result showed that 10g of the substrate 

gave the highest yield of brix conversion. 

The lowest yield was found with substrate 

weight of 20g. Zabed et al. (2014) stated that 

high ethanol productivity and yield in batch 

fermentation can be obtained by using 

higher initial sugar concentration; the 

maximum rate of ethanol production is 

achieved when using sugars at the 

concentration of 150 g/L. However, it needs 

longer fermentation time and higher 

recovery cost. High substrate loading for 

industrial fermentation is feasible and hence 

always desired (Nagodawithana et al., 

1974). 

Although inoculum size of 4 gave a higher 

yield compared with inoculum size of 5, 

increase in the inoculum size did not really 

have a great effect in the yield of brix 

converted. This result corroborates with the 

work of Laopaiboon (2007), which reported 

that inoculum concentration does not give 

significant effect on the final ethanol 

concentration but it affects the consumption 

rate of sugar and ethanol productivity. 

From the result, highest yield of ethanol was 

obtained at an alkaline pH of 6. This agrees 

with the work of Ganigue et al. (2016) who 

reported that when ethanol is continuously 

produced from the glucose fermenting 

culture, other acids like carbonic acid and 

acetic acid are continuously generated 

making the system more acidic and low pH 

could trigger the production of ethanol. 

CONCLUSION  

In conclusion, sugarcane bagasse which 

causes nuisance to the environment, was 

converted to bioethanol. From the response 

surface plots, the maximum ethanol yield 

was 2.29g/l but with the optimal conditions 

of pH 6, temperature of 40
o
C, inoculum size 

of 4 substrate weight of 10g and 

fermentation time of 72h, maximum ethanol 

yield of 4.23g/l was predicted. 
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